

ISOFLAVONES FROM THE GALL AND WOOD OF *WISTERIA BRACHYBOTRYS*

MICHIKO KANEKO, HIROYUKI NAKATA, FUKIKO TAKADA, MASAKO MATSUMURA, CHIYO KITAGAWA, SHIGEMI SAKASHITA, MARIKO NUNO and TAMOTSU SAITO¹

Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01, Japan

(Received 24 April 1987)

Key Word Index—*Wisteria brachybotrys*; Leguminosae; isoflavanoid; isoflavone glucoside; 6-methoxy-7,8,4'-trihydroxyisoflavone; isotectorigenin 7-O- β -D-glucopyranoside.

Abstract—Two new isoflavones, 6-methoxy-7,8,4'-trihydroxyisoflavone and isotectorigenin 7-O- β -D-glucopyranoside, were isolated from the gall and wood of *Wisteria brachybotrys*, together with 15 known isoflavonoids.

INTRODUCTION

The gall formed on infection of *Wisteria* spp with the bacterium *Erwina milletiae* Magrou, is used in Japanese folk medicine e.g. as an anti-inflammatory agent.

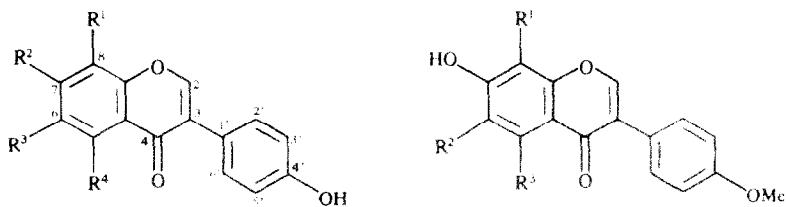
Several isoflavones have been isolated from the bark and wood of *Wisteria* species [1-3]. In this paper, we report the isolation and characterization of two new isoflavones from the gall and wood of *Wisteria brachybotrys* Sieb. et Zucc., together with the 15 known isoflavonoids.

RESULTS

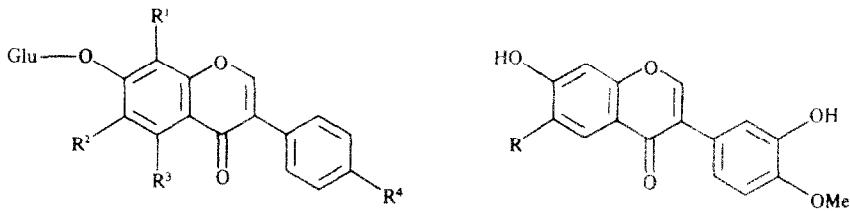
Compound **1** had the molecular formula $C_{16}H_{12}O_6$ (high resolution mass spectrum). Its UV (268, 325 nm) and 1H NMR (δ 8.32, 1H, H-2) spectra were characteristic of an isoflavone. Acetylation of **1** gave a crystalline triacetate (**1a**), indicating that **1** had three hydroxyl groups. Its 1H NMR spectrum exhibited four aromatic protons as an A_2B_2 system at δ 7.28 and 7.74 (each d , J = 9.0 Hz) due to two sets of protons at C-3', C-5' and C-2', C-6' of ring B. A one-proton singlet at δ 7.88 was assigned to a proton at C-5, and a three-proton singlet at δ 3.89 was attributed to a methoxyl group. In the mass spectrum of **1**, a peak at m/z 182 corresponded to that of an ion arising by a retro-Diels-Alder rearrangement from $[M]^+$ m/z 300, indicating that two hydroxyl groups and one methoxyl group were attached on ring A. A peak at m/z 118 suggested the presence of one hydroxyl group on ring B. In its UV spectrum, a bathochromic shift was observed on addition of Sodium acetate and hypsochromic shifts were observed on addition of hydrochloric acid to aluminium trichloride. These facts suggested that **1** could be 6-methoxy-7,8,4'-trihydroxyisoflavone. To confirm this, the solvent-induced shift of the methoxyl resonance in the 1H NMR spectrum was measured. In the 1H NMR spectrum of **1a**, the signals of the methoxyl group moved upfield from δ 3.84 to 3.20 on changing from $CDCl_3$ to C_6D_6 solution. Moreover, **1** showed a positive Gibbs reaction. Compound **1** is, therefore, 6-methoxy-7,8,4'-trihydroxyisoflavone.

Compound **2**, $C_{22}H_{22}O_{11}$, was obtained as a white powder. Its UV and 1H NMR spectra suggested the

presence of an isoflavone glycoside. Acetylation of **2** gave a hexaacetate. Acid hydrolysis of **2** afforded D-glucose and a crystalline aglycone, the spectroscopic of which were identical to those of 8-methoxy-5,7,4'-trihydroxyisoflavone (isotectorigenin) [5]. The 1H NMR spectrum of **2** exhibited a signal of one anomeric proton (δ 5.09 1H, d , J = 7.0 Hz, glucose H-1), indicating the presence of a β -glucopyranoside linkage. The glucose moiety was found to be located at C-7 by comparison of the UV spectral shifts of **2** and its aglycone. The UV spectrum of **2** showed no bathochromic shift on addition of NaOAc and a bathochromic shift on addition of $AlCl_3$. Consequently, **2** is isotectorigenin 7-O- β -D-glucopyranoside.

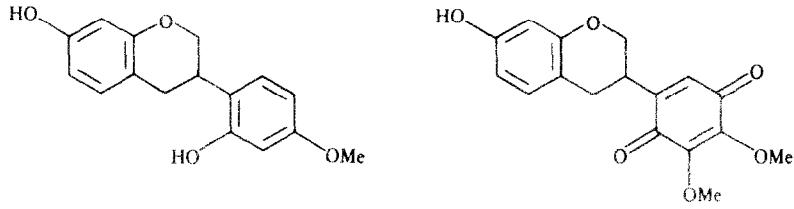

Compounds **3-17** were identified as daidzein (**3**), genistein (**4**), glycinein (**5**), kakkatin (**6**), bibiochanin A (**7**), 8-O-methylretusin (**8**), irisolide (**9**), afromosin (**10**), formononetin (**11**), wistin (**12**), ononin (**13**), calycosin (**14**), odoratin (**15**), vestitol (**16**) and pendulone (**17**), respectively. Compounds **3-11** and **13-17** have never been isolated from this plant.

EXPERIMENTAL


Extraction and isolation. The dried gall and wood of *Wisteria brachybotrys* (10 kg), purchased in Tokyo, was extracted with MeOH under reflux (\times 3). The MeOH extract was concd and the residue (652 g) dissolved in MeOH-H₂O (1:1). This soln was extracted with *n*-hexane and CHCl₃ (\times 3), successively. The suspension left after removal of the MeOH was extracted with *n*-BuOH (\times 3).

The CHCl₃ extract was repeatedly subjected to CC on silica gel with various solvent systems, on Sephadex LH-20 with MeOH and on Polyamide with MeOH, followed by prep. TLC to give **3** (20 mg), **4** (150 mg), **5** (339 mg), **6** (5 mg), **7** (14.2 mg), **8** (10 mg), **9** (30 mg), **10** (230 mg), **11** (210 mg), **14** (11 mg), **15** (30 mg), **16** (26 mg) and **17** (108 mg). From the *n*-BuOH extract, **1** (31 mg), **2** (678 mg), **12** (959 mg) and **13** (265 mg) were isolated by a similar procedure. Compounds **3-17** were characterized by comparison of their spectroscopic properties with lit. values [1, 2, 4, 6-15].

Compound 1. A white powder (MeOH), mp over 300°; UV λ_{max}^{MeOH} nm: 323, 267; (+ NaOAc) 331, 275; (+ NaOAc-H₃BO₃) 327, 272; (+ AlCl₃) 330, 274; (+ AlCl₃-HCl) 317, 263; FeCl₃ (+);



	R ¹	R ²	R ³	R ⁴		R ¹	R ²	R ³
1	OH	OH	OMe	H		7	H	
3	H	H	H	OH		8	OMe	H
4	H	H	OH	OH		9	H	OMe
5	H	H	OH	OMe		10	H	OMe
6	H	H	OMe	OH		11	H	H

2 R¹ = OMe, R² = H, R³ = R⁴ = OH
12 R¹ = R³ = H, R² = R⁴ = OMe
13 R¹ = R² = R³ = H, R⁴ = OMe

14 R = H
15 R = OMe

16

17

Gibbs (+); EIMS (70 eV) *m/z*: 300.0635 ([M]⁺, calcd. for C₁₆H₁₂O₆: 300.0634), 182, 164, 152, 118; ¹H NMR (100 MHz in DMSO-*d*₆): δ 3.89 (3H, s, OMe), 7.28 (2H, d, *J* = 10.0 Hz, H-3' and H-5'), 7.74 (2H, d, *J* = 10.0 Hz, H-2' and H-6'), 7.88 (1H, s, H-5), 8.32 (1H, s, H-2).

Acetylation of 1. Treatment of 1 with Ac₂O-C₅H₅N overnight at room temp. gave a triacetate as colourless needles (MeOH), mp 233–235°; EIMS (70 eV) *m/z*: 426 [M]⁺, 384, 342, 300; ¹H NMR (100 MHz in C₆D₆): δ 1.7–2.0 (9H, 3 × OAc), 3.20 (3H, s, OMe), 7.13 (2H, d, *J* = 9.0 Hz, H-3' and H-5'), 7.18 (1H, s, H-5), 7.49 (2H, d, *J* = 9.0 Hz, H-2' and H-6'), 7.68 (1H, s, H-2) (in CDCl₃): δ 2.3–2.5 (9H, 3 × OAc), 3.84 (3H, s, OMe), 7.28 (2H, d, *J* = 9.0 Hz, H-3' and H-5'), 7.58 (2H, d, *J* = 9.0 Hz, H-2' and H-6'), 7.67 (1H, s, H-5), 7.98 (1H, s, H-2).

Compound 2. A white powder (MeOH), mp 280–283°; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 334, 266; (+ NaOAc) 334, 266; (+ AlCl₃) 380, 277; (+ AlCl₃-HCl) 380, 276; FeCl₃ (+); Gibbs (-); EIMS (70 eV) *m/z*: 462 [M]⁺, 300, 285, 257; ¹H NMR (100 MHz in DMSO-*d*₆): δ 3.0–4.0 (6H, br, glucose H-2-H-6), 3.80 (3H, s, OMe), 5.09 (1H, d,

J = 7.0 Hz, glucose H-1), 6.86 (2H, d, *J* = 9.5 Hz, H-3' and H-5'), 6.92 (1H, s, H-6), 7.43 (2H, d, *J* = 9.5 Hz, H-2' and H-6'), 8.43 (1H, s, H-2).

Acetylation of 2. Treatment of 2 with Ac₂O-C₅H₅N overnight at room temp. gave a hexaacetate as colourless needles (EtOH), mp 184–184.5°; EIMS (70 eV) *m/z*: 714 [M]⁺, 331, 300, 285, 271, 257; ¹H NMR (100 MHz in CDCl₃): glucose moiety: δ 3.9–4.1 (1H, m, glucose H-5), 4.26 (1H, m, glucose H-6), 5.1–5.5 (4H, m, glucose H-1–H-4); isotectogenin moiety: δ 3.81 (3H, s, OMe), 7.10 (1H, s, H-6), 7.24 (2H, d, *J* = 8.0 Hz, H-3' and H-5'), 7.52 (2H, d, *J* = 8.0 Hz, H-2' and H-6'), 7.85 (1H, s, H-2); acetyl groups: δ 2.0–2.2 (12H, m), 2.31 (3H, s), 2.45 (3H, s).

Acid hydrolysis of 2. Compound 2 (100 mg) was refluxed in 2.5% *a*-H₂SO₄ (10 ml) for 48 hr to afford D-glucose and isotectogenin. Yellow needles (MeOH), mp 235.5–236°; UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 339 (sh), 265; (+ NaOAc) 339, 273; (+ AlCl₃) 380, 315, 275; (+ AlCl₃-HCl) 380, 315, 276; EIMS (70 eV) *m/z*: 300 [M]⁺, 285, 282, 257, 254, 150, 139, 118. These data and the ¹H NMR data agreed with the lit. values [5].

REFERENCES

1. Shibata, S., Murata, T. and Fujita, M. (1963) *Chem. Pharm. Bull.* **11**, 382.
2. Tanaka, I., Ohsaki, K. and Takahashi, K. (1975) *Yakugaku Zasshi* **95**, 1388.
3. Ohashi, H., Fujiyama, T. and Imamura, H. (1979) *Res. Bull. Fac. Agr. Gifu Univ.* **42**, 123.
4. Hayashi, T. and Thomson, R. H. (1974) *Phytochemistry* **13**, 1943.
5. Dhingra, V. K. and Seshadri, T. R. (1974) *Indian J. Chem.* **12**, 1118.
6. Donnelly, D. M. X. and Thompson, J. C. (1973) *J. Chem. Soc., Perkin I* 1737.
7. Krishnamurty, H. J. and Siva Prasad, J. (1980) *Phytochemistry* **19**, 2797.
8. Meegan, M. J. and Donnelly, M. X. (1975) *Phytochemistry* **14**, 2283.
9. Kubo, M., Sasaki, M., Namba, K., Naruto, S. and Nishimura, H. (1975) *Chem. Pharm. Bull.* **23**, 2449.
10. Cocker, W., Dahl, T., Dempsey, C. and McMurtry, T. B. H. (1962) *J. Chem. Soc.* 4906.
11. Harper, S. H., Shirley, D. B. and Taylor, D. A. (1976) *Phytochemistry* **15**, 1019.
12. Komatsu, M., Yokoe, I. and Shirataki, Y. (1976) *J. Pharm. Soc. Jpn.* **96**, 254.
13. De Oliveira, A. B., Iracema, M., Maoruga, L. M. and Gottlieb, O. R. (1978) *Phytochemistry* **15**, 593.
14. De Oliveira, A. B., Gottlieb, O. R. and Pereira, S. A. (1975) *Phytochemistry* **14**, 2495.
15. Hayashi, Y., Shirato, T., Sakurai, K. and Takahashi, T. (1978) *Mokuzai Gakkaishi* **24**, 898.